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The instability of two-dimensional periodic flows to  spanwise-periodic ‘longitudinal- 
vortex ’ modes is examined. The undisturbed state comprises a parallel shear flow and 
a two-dimensional O ( E )  wave field as encountered in, say, water-wave or 
hydrodynamic-stability theories. 

When the mean shear is weak, of order e2, the present theory reduces to that of 
Craik (1977) and Leibovich (19776, 1980). For stronger but still weak shear, of order 
c, it  is established that the Craik-Leibovich instability mechanism is essentially 
unchanged, apart from scaling factors. 

For strong O(1) shear flows, the governing equations are derived by using, in part, 
a generalized Lagrangian-mean formulation. The resultant eigenvalue problem for 
the longitudinal-vortex instability is then more complex, but simplifies in the case 
of small spanwise spacing of the vortices, in the inviscid limit. An example is given 
of flows that exhibit instability in this limiting case. Such instability seems likely to 
occur for a wide class of periodic shear flows. Complementary physical interpretations 
of the instability mechanism are discussed. 

1. Introduction 
Longitudinal vortices are prominent features of shear-flow turbulence. Also, the 

development of such vortices from initially small spanwise irregularities in unstable 
boundary layers has been revealed by the careful experiments of Klebanoff, Tidstrom 
& Sargent (1962). I n  these and in later experiments, notably those of Nishioka, Iida 
& Ichikawa (1975) on plane Poiseuille flow and Saric & Reynolds (1981 private 
communication) on Blasius flow, the wave field also develops a marked ‘peak- 
and-valley ’ structure, which is clear evidence of the growth of oblique-wave modes 
(for a recent discussion see Craik 1980). Associated theoretical work by Benney & 
Lin (1960), Benney (1964), Antar & Collins (1975) and others calculates the 
longitudinal-vortex flow that is driven by the interaction of selected two-dimensional 
and oblique-wave modes. I n  such cases, the longitudinal vorticity a t  first grows 
linearly in time t (or distance x) for constant-amplitude waves, while the spanwise- 
periodic component of downstream velocity starts to grow as t2 (or x2). 

In  practice, a preferred spanwise spacing may develop spontaneously, even when 
the downstream-propagating waves are initially two-dimensional (Anders & Black- 
welder 1980). This may be due to  selective amplification of certain oblique-wave 
modes either by linear or nonlinear processes, the longitudinal vortices being forced 
by the subsequent nonlinear interaction of the two- and three-dimensional wave 
modes. Alternatively, it is possible that the two-dimensional periodic flow is unstable 
to disturbances of longitudinal-vortex form : in which case, such structures might 
grow exponentially in time t until a finite-amplitude equilibrium state is reached. In  
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the latter event, i t  is the nonlinear coupling between the fundamental two-dimensional 
waves and the spanwise-periodic flow that would generate oblique-wave modes - a 
reversal of the former evolutionary process. 

The latter possibility has received little theoretical attention (see Herbert & 
Morkovin 1980), though it  is no less rational than the Benney-Lin mechanism. Nayfeh 
(1981) has examined the effect of constant-amplitude vortices on the growth rates 
of oblique waves. An exponential growth of the vortices themselves has not 
previously been proposed for strong shear flows. But an instability of rather similar 
form has been studied in the context of weak mean shear flows by Craik (l977,1982a), 
Leibovich (1977b, 1980) and Leibovich & Paolucci (1980, 1981). This work was 
developed as an explanation of the phenomenon of ‘Langmuir circulations ’ in lakes 
and oceans. In  it, the basic state consists of two-dimensional O(e)  waves and an O ( 2 )  
Eulerian mean shear flow ~ ( z ) .  The latter flow may be maintained by a wind stress 
or it may result from wave dissipation by viscosity: in either case, the so-called 
Craik-Leibovich instability mechanism will normally operate to generate spanwise- 
periodic flows. In  the absence of viscous dissipation, the exponential growth rate of 
the Craik-Leibovich instability is 0 ( e 2 ) .  Accordingly, with sufficiently small wave 
slopes E ,  the instability can be suppressed by viscous damping; but, for typical water 
waves, this occurs only at extremely small amplitudes, and instability is normally 
to be expected. 

The mathematical structure of the ultimate governing equations of the Craik- 
Lcibovich theory resembles that for onset of B6nard convection or of Taylor vortices 
between concentric rotating cylinders. The physical mechanism has been cogently 
explained as a kinematical process in which vortex-line deformation by the Stokes-drift 
gradient of the wave field combines with vertical advection of the mean Eulerian flow 
by the vortex motion (see Craik 1977; Leibovich 1977b). The present work began as 
an attempt to discover whether the Craik-Leibovich instability might continue to 
operate for stronger mean shear flows than those originally envisaged. This was 
readily found to be so for larger, but still small, shears O ( E ) ,  with only minor 
modifications of the theory. For such weak shears, an alternative, dynamical 
explanation of the instability is given, in which i t  is identified rather closely with 
Taylor-Gortler instability of curved flows, but averaged in the downstream direction, 
where the local curvature corresponds to that of the undulating streamlines. 

For strong O(1) shear flows, on the other hand, a completely new theory has had 
to be constructed, though the seminal idea of the Craik-Leibovich work remains 
within it. The analysis is largely based on the generalized Lagrangian-mean (GLM) 
formulation of Andrews & McIntyre (1978a, b ;  hereinafter referred to as I and TI) 
as outlined in the preceding paper Craik (19826) for strong shear flows. This 
formulation quickly yields the solution for O(e2)  and O(s)  shear flows, the GLM 
equations then reducing directly to their Eulerian counterparts in much the same way 
as shown by Leibovich (1980). However, with 0(1) shear flows, the back-effect of the 
mean-flow modification upon the wave field must be explicitly calculated, and the 
resultant stability problem for the longitudinal vortices is much more complex. 

The inviscid stability problem is specified in a form suitable for future numerical 
computation of particular cases. In  addition, an approximation for large spanwise 
wavenumbers is developed, for which the problem simplifies sufficiently to  allow 
analytical solution. An example is given that demonstrates the existence of 
longitudinal-vortex instability in strong shear flows. It is likely that such instability 
will occur in a wide class of shear flows perturbed by two-dimensional waves. 
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2. General formulation 
2.1. Governing equations 

We consider the GLM equations for cases where all mean quantities are independent 
of the streamwise coordinate x = x l .  (A possible exception is mean pressure n, which 
may have an x, independent gradient anlax, for viscous channel flows). For 
constant-density fluid in a non-rotating reference frame, these equations are, from 

L -I,- (2.1 a )  I (3.8), 

(2.1 b )  

(2.1 c)  

(u1 p,)+n, ,  = -x1> 

D L ( U k  - p 3 )  + Uk,,(@ -pk)  + n,, = - x,. 
DL(U2-pz)  +U: , z (U: -p~)+n ,Z  = -&, 

The notation is identical with that of the preceding paper (Craik 1982 b ,  hereinafter 
referred to as C). Pu'umerical suffixes relate to components along Cartesian axes 
(x,, x2 ,  5,) = ( x ,  y ,  z ) ,  the comma denotes partial differentiation, and summation over 
repeated indices is implied. The operator DL is defined as DL = a/at+f$a/axj; a: 
and pi are Lagrangian-mean velocity and pseudomomentum respectively, and the X i  
denote dissipative terms. For simplicity in what follows, we consider only inviscid 
fluids for which the X i  are identically zero; but such terms might be retained (see 
Leibovich 1980; Grimshaw 1982). 

2.2. Weak O ( 2 )  mean flow 

We first briefly review the situation discussed in detail by Leibovich (1980), which 
relates to the Craik-Leibovich instability mechanism with weak O(e2)  mean flows. 
The cases of O ( E )  and 0(1) mean flows are then examined. 

An initially two-dimensional wave field of, say, surface gravity waves for definite- 
ness, has wave slopes characterized by the small parameter E .  This gives rise to a 
unidirectional O(e2)  Stokes drift [ @ ( x ) ,  0, 01. Also present is a weak O(e2)  Eulerian-mean 
shear flow [ ~ ( x ) ,  0, 01. We now envisage a small spanwise-periodic perturbation with 
Eulerian velocity components of the form 

(G, 5,G) = E2SRe {eg t  e izy  [C(z),  G ( z ) ,  25(z)]} ,  (2 .2a )  

where il6 + = 0 (2.2b)  

by continuity. 6 is a second small parameter, which measures the strength of this 
motion relative to the primary O(e2)  shear flow. This S is assumed sufficiently small 
that linearization with respect to 6 yields a good approximation to  the equations 
governing the spanwise-periodic disturbance. The growth or decay rate v of the 
spanwise vortices should not be confused with the growth rate of the waves (for which 
r was also used in C). Throughout the present paper, the O ( E )  waves are assumed 
to be of constant amplitude. 

In  such cases, the pseudomomentum per unit mass of the unperturbed state equals 
the Stokes drift [$,0,0] (cf. C, 93; Leibovich 1980) with an error that  is O(e4). 
Accordingly, a t  O(e2) ,  ti:-pi is just the Eulerian velocity distribution [ ~ ( z ) ,  0, 01. Also, 
the distortion of the primary O(E)  wave field by the O(e26) spanwise-periodic currents 
yields wave components of order O(e3S) and hence Stokes-drift and pseudomomentum 
perturbations of order O(e4S). Since such perturbations may be ignored in comparison 
with the O(e26) Eulerian velocity perturbations, the whole O(e2S) contribution to 
ii? -pi still comes from the Eulerian velocity field. It also follows that the contributions 
to ?it a t  O(e2)  and O(e2S) are [ i i ( z )  +I%?(%), O , O ]  and [G, v", G] respectively. 
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For inviscid flow, (2.1) and (2.2) then reduce to 

(Td = -&a‘, (2 .3a)  

(T(??,-ilzii) = il&$’, (2 .3b )  

i1&8,, = 0, ( 2 . 3 ~ )  

where the prime denotes dldz,  and the pressure TI has been eliminated by cross- 
differentiation. Note that the right-hand sides of (2 .3a,  b )  are O(e4S), which implies 
that (T must be O(e2) .  These equations yield 

8,,,+12[(@’u’/(T2)--1]zii = 0 (2 .4)  

in terms of 8 only, which, together with appropriate boundary conditions (typically 
8 = 0 a t  levels z = z1 and z 2 ) ,  defines an eigenvalue problem for (T = ( ~ ( 1 ) .  For these 
boundary conditions, (T normally has real roots, indicating instability, when $’a’ 
takes positive values in some part of the flow domain. Several examples are given 
by Craik (1977), who also considers the viscous case ; Leibovich (1977 b )  discusses the 
inviscid eigenvalue problem (2.4), and its equivalent for stratified flows, in greater 
generality; while Leibovich & Paolucci (1981) determine stability criteria for 
time-dependent mean flows a(z, t ) .  

2 .3 .  Weak O(e) mean flow 

We turn now to cases in which the basic Eulerian shear flow ~ ( z )  is O(e); that is, of 
comparable magnitude to the wave orbital velocities. The primary Stokes drift and 
pseudomomentum remain unchanged a t  O(e2) ,  and these are nearly equal, with an 
error of O(c3) .  We again envisage spanwise-periodic perturbations as in (2.2), but with 
c28 now provisionally replaced by €8. Such perturbations induce spanwise-varying 
distortions of the wave field that are O(e28) and consequent Stokes drift and 
pseudomomentum perturbations O(e38).  The latter are again negligible in comparison 
with the O(e8) Eulerian-velocity perturbations. Proceeding as above, equations 
identical with (2.3a-c) are again obtained; but now the right-hand sides of (2 .3a)  and 
(2.3 6 )  are respectively O(el8l) and O(ezldl). These imply the scalings 

Accordingly, the counterpart of (2 .2a,  b )  should be rechosen as 

(C, f i ,  6) = e8Re {cut eizU[G(z),  e & d ( x ) ,  d & ( z ) ] } ,  

with (T = &c-rl. 

On noting that the Stokes drift and pseudomomentum distortions a t  O(c38) remain 
small compared with the resealed v”- and &?-components, which are 0 ( 8 8 ) ,  one readily 
recovers (2.4) for this case also. The same instability mechanism therefore operates 
in the presence of such stronger O(e) mean shear flows. 

2.4.  Strong shear $ow 

Thirdly, we consider cases of strong 0(1) Eulerian-mean shear flows of the kind 
discussed in C. The waves may be constant-amplitude free-surface waves or waves 
on any compliant boundary in a strong shear flow. Alternatively, they may be 
neutrally stable modes, contained between plane boundaries a t  z1 and z2. We therefore 
have an O(1) primary flow uL = [u(z), O,O],  an O(e) wavelike motion, as described in 
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C(3.2), and O ( 2 )  Stokes drift and pseudomomentum as in C(3.3) and C(3.4). Since 
the waves are here of constant amplitude, we set ci = 0 in all these results. 

We first postulate a spanwise-periodic perturbation of the form 

(C, f i , zZ)  = 6Re{eu te i z~[ . i i ( z ) , 6 ( z ) , f i ( z ) ] } .  (2 .5)  

Induced perturbations in the wave field are of strength O(eB), giving Stokes-drift and 
pseudomomentum perturbations of O(e2&). The Lagrangian-mean velocity a t  O( 6) is 
therefore identical with (2 .5) ,  and the O(6) equations are just 

a& = -fiu‘, (2 .6a)  

fT(6,3-ilt??) = 0, (2 .6b)  

i16+ii13 = 0, ( 2 . 6 ~ )  

on eliminating m. These lead to 

f T ( f i * 3 3 - 1 2 f i )  = 0, 6 = -u’fT-%, 

which has no non-zero solution for boundary conditions of the form zi, = 0 a t  z = z1 
and z 2 ,  and which therefore cannot lead to instability. 

A resealing of the perturbation is necessary, to 

(C, fi, 6) = 6Re {cut e izu[&(z) ,  eC(z), czi,(z)]}, (2.7 1 
where CT = erl  is an O(e) growth rate, and the y- and z-velocity components are weaker 
by a factor e than the downstream component. Clearly, the O(s2S) Stokes-drift and 
pseudomomentum perturbations remain negligible compared with the resealed O(e6) 
Eulerian velocity components ; but this does not now mean that these perturbations 
may be disregarded. From (2.1 b, c) one finds at O(e2S) that  

€66a(8,,-ilzit) = &i14p;,3-ila’@l, 

where py,3 denotes the z-derivative of the O(e2)  pseudomomentum C ( 3 . 4 a ) ,  and 
Re { e n t f i z ~ ~ l }  is the O(e2S) spanwise-periodic perturbation of p,. Similarly, a t  O(cS) ,  
(2.1 a )  yields 

6w&= -e6fiG’. (2.8) 

On writing py = c2P,0 and jjl = e26e, the final O(c6) equation for zi, takes the form 

The left-hand side of this equation is similar to  that of (2 .4) ,  with the O(e2) Stokes 
drift replaced by the pseudomomentum py ; but now the right-hand side depends 
upon the distortion of the wave field through e. The GLM equations (2 .1)  provide 
no direct means of evaluating P,, and a separate examination of the wave field is 
necessary. 

Since it is only the O(e2S) contribution to p ,  that is required, the influence on the 
waves of the O(e6) velocity components v“ and 65 may be ignored. That is to say, the 
significant part of the distortion of the wave field is due to  the O(6) spanwise-periodic 
x-velocity C. Accordingly, in calculating one need only consider the linearized 
theory of wave motion in the presence of a mean flow U + G ,  in which C represents 
weak spanwise variations. Whether the term in fi acts to reinforce or to inhibit the 
instability remains to be seen. 
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2.5. Three-dimensional waves 
Finally in this section, we consider the generation of spanwise-periodic Aows by wave 
fields that contain 0 (e) oblique-wave components. This is the situation first envisaged 
by Benney & Lin (1960) for boundary layers, and which formed the basis of the early 
work of Craik (1970), Leibovich & Ulrich (1972) and Craik & Leibovich (1976) on 
Langmuir circulations. Now, the initial state consists of a mean Eulerian velocity U ( Z )  
and a wave field with characteristic slopes of order O(s) ,  comprising both two- 
dimensional (in x1 and x3)  and oblique wave components. The associated Stokes drift 
Us and pseudomomentum are then spanwise-periodic. 

When the Eulerian mean shear u' is weak, of order 2, Leibovich (1980) has shown 
that (2.1) reduce to the equations originally derived by Craik & Leibovich (1976), 
which are expressed in terms of Eulerian velocity components and the prescribed 
Stokes drift of the wave field (the results (2.3) are a special case of these). A 
spanwise-periodic Stokes drift then distorts the initially uniform spanwise vorticity 
field U'( z )  to generate spanwise-periodic longitudinal ( x J  vorticity that grows linearly 
with time t ; while the associated spanwise-periodic downstream velocity ii initially 
grows as t2  (cf. Leibovich & Ulrich 1972). Associated viscous problems have been 
treated by Craik & Leibovich (1976), Leibovich (1977a) and Leibovich & Radha- 
krishnan (1977). 

When the Eulerian-velocity gradient U ' ( z )  is 0(1) and the pseudomomentum is 
spanwise-periodic, the O ( 2 )  equations corresponding to (2.1) reduce to 

(2.10a) 

(2.106) 

Now, if the x2 and x3 components of Stokes drift and pseudomomentum should happen 
to be zero, or equal to one another, a t  this order, the term in square brackets is just 
the mean longitudinal vorticity. More generally, this term is the x1 component of a 
vector field that is associated with the vorticity field by a simple mapping (see I, $7). 
This equation therefore describes the rate of creation of x1 vorticity by the tilting 
of the spanwise-vorticity field U' by the spanwise-periodic pseudomomentum gradient 
p1,2.  Initially, such vorticity would grow linearly with time t ,  with consequent growth 
of the spanwise-varying part of t i p  proportional to  t2 .  Such situations are described 
in the inviscid analyses of, for example, Benney (1964) and Craik (1970), who 
employed Eulerian variables throughout. 

However, the GLM equations are again insufficient to allow us to  solve these 
problems, because distortions of the Stokes drift and pseudomomentum develop a t  
the same rate and with the same strength as those of UL. The required evolution 
equations for p and us must include the influence of the developing mean flow upon 
the fluctuating part of the motion. I n  this sense, the GLM equations (2.1) are 
incomplete, for they describe the effect of fluctuations upon the mean state, but not 
vice versa (cf. McIntyre 1980). 
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3. The eigenvalue problem for strong shear flows 
We here formulate the inviscid stability problem for spanwise-periodic disturbances 

in the presence of a strong mean flow a(z) and O(e)  two-dimensional straight-crested 
periodic waves that propagate in the flow direction. The governing equation for 
spanwise-periodic mean flows of the form (2.7) is given in (2.9). I n  this, Pf,3 is known 
in terms of the primary wave field, since 

from C ( 3 . 4 ~ ) .  
The pseudomomentum component 8 must be recovered from 

2, 1 - - 6 .  - j ,1 ud= j - < j , l u ~ - a ~ k < l , 1 6 k ~  (3.2) 

where = ~ ( z )  + G(y, x ,  t )  (we recall that  it is sufficient to  consider only the O(S) 
downstream component of the mean flow). The fluctuations tij and Q have O ( E )  
contributions from the primary wave field and O(e.6) terms that are proportional to 
exp[i(aJ:kly)+eu,t]. After reduction, 8 may be expressed in the form 

e = d ( z )  . z i + ~ ( z )  ti,3 + Re {U(z) $+ g(z) $,3} (3.3) 

where d, B, $2, 9 are functions independent of ul, and &.z) relates to the O(ES) 
spanwise-periodic wave-field modification. The derivative of this expression for f l  is 
given in $4. It is also shown in $ 4  that the wave-field modification satisfies the 
inhomogeneous equation 

(3.4) 

Here $ ( z )  and a denote the eigenfunction and wavenumber of the primary wave field, 
which satisfy Rayleigh's equation 

u($"-.")-a"$ = 0. (3.5) 

CT,& = -a'&. (3.6) 

Finally, ti and zi, are related by ( 2 . 8 ) :  

We note that the eigenvalue g1 occurs explicitly only in (2.9) and (3.6). 
The coupled system (2.9), (3.3), (3.4) and (3.6), together with appropriate homo- 

geneous boundary conditions, completely specifies the eigenvalue problem for cl, 
given the primary shear flow afz) and wave-field eigenfunction $ ( z ) .  This is much more 
complex than the corresponding problem (2.4) for weak mean flows, but some further 
progress is made in $55 and 6 without recourse to  numerical computation. 

For viscous flows, the situation is still more complex. For weak O(e2) mean flow iZ(z), 
the viscous counterpart of (2.4) is discussed by Leibovich (1980). It is then necessary 
to suppose that the wave-slope parameter E and 'wave Reynolds number' R, = o/a2v 
(w being the wave frequency) are such that R i l  is 0 ( e 2 )  : otherwise, viscous damping 
annihilates the O ( E ~ )  growth rate u predicted by inviscid theory. For typical water 
waves, such viscous effects are too weak to suppress the instability. Immediate 
extension to  O ( E )  mean flows may be made, by similar arguments to  those given in 
$2.3, on regarding Rkl t o  be O(&). 

For 0 ( 1 )  mean flows, the flow Reynolds number R must be taken as O(s-') to 
balance the potential O ( E )  inviscid growth rate in this case. This replaces (2.9) by a 
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fourth-order differential equation for zi.l(z), and (3.6) by a second-order differential 
equation for G(z )  in terms of 63. I n  contrast, viscous terms remain absent from (3.4) 
and (3.5) over most of the flow domain, but must be retained near walls and critical 
layers. Fortunately, linear theory remains valid a t  the latter locations, the role of 
nonlinearity in the critical layer only becoming significant at amplitudes E that are 
O(R-2) or more (see e.g. Benney & Bergeron 1969). Further progress for viscous flows 
will require a substantial computational effort. 

4. Determination of pl and 4 
Without loss, the x-averaged flow field may be written as (cf. (2.7)) 

u = U ( X )  + S eUt cos Zy U ( z )  + O(S2, ES,  E ~ ) ,  

‘u = eSeut sin Zy 6(z) + O(s2S, d2), 

w = ES eUt cos Zy $(z )  + O(&, EP) ,  

where CT is O(e)  and presumed real. Also, the x-periodic field has the form 

u1 = E Re {$’(z) eiaz} + eS Re {%l(z) cos Zy eUt eta%} + O(e2,  eS2) ,  

u2 = eSRe{%,(z) sinZyeuteia”}+0(E2,~S2), 

u3 = ~Re{-ia$(z)  e iaZ}+sSRe{%3(z)cosZye“te ia”}+O(~2,~S2) .  

Here 16+,iilf = 0, ia%,+I%,+%; = 0, 

to preserve continuity, the terms in %j deriving from the modification of the O(e)  wave 
field by the O(S) spanwise-periodic component of u. 

The x-component of pseudomomentum may be written as 

p ,  = E2P,O+E2S~~eUtcos~y+o(e4 ,E3S,~262) ,  

where P,O is given by (3.1),  and 
the particle displacements cl, c3 in the x- and z-directions as 

may be recovered from (3.2). To do so, wc write 

tj = t jO+eSRe{~jcosZyeutei””} (j = 1 , 3 ) ,  

where 6; are just and t3 as given in C (3.2) with ci = 0. (The displacement component 
E 2 ,  though non-zero a t  O(ES) ,  does not contribute to p1 a t  the required order of 
approximation.) 

It is readily found that 

where the prime denotes dldz.  Substitution in (3.2) and extraction of terms that are 
O(e26) leads, after some reduction, to 

- { ($) ’+ z[ U’ (g) ‘- a2$ *] + c.c.} . (4.1 ) 
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On defining $ ( z )  = ia-l@3(z), 

%’l--@2 = $ I *  

the continuity equation yields 
il 
a 

Also, the momentum equations yield 

ia(G%’,+ uq- U’$?5)+u’@3 = - ia9,  

iau(4Y2 = 19, 

iaii@,+a2Uq5 = -PI, 

where the O(e8) pressure component is 

eSp Re {P(z) cos Zy eUt eiaz}. 

Elimination of 9 from (4.4a, b ) ,  gives 

a‘ n ia = :l5--u-’(UJ5’-U‘$h), 
1 U 

which, together with (4.3), leads to  

(a’$- Uq5’+ U’q5). 
a2 12 

@1 =- $’+ (a2 + 12)  ti 

On substituting for %‘I and 4Y3 in (4.1), one obtains 

8 = d ( z )  U+ ~ ( z )  U‘ +Re { ~ ( z )  $ + g(z) $0 

45 

(4 .2)  

( 4 . 3 )  

( 4 . 4 ~ )  

(4.4b) 

(4.4c) 

(4.5) 

after reduction, where 

a‘ 
Ul 

(4.6) Also, from (3.6), U = --$. 

Finally, elimination of 9, el and e2 from (4.4a-c) and (4.3) leads to the equation 

++ ~ “ 4 ,  (4.7) 1 
for 6: 

where q5 satisfies the Rayleigh equation (3.5). The corresponding equations for viscous 
flows may be obtained in a similar manner, that for $ then being of fourth order. 
Note that, as an alternative to the above (Eulerian) formulation in terms of 4, the 
wave-field modification might equally well have been expressed in terms of the 
(Lagrangian) variable E3. 
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5. The approximation l2 % a2 

In an attempt to make further analytical progress, suppose that the wavelength 
2nla of the fundamental waves is long compared with the characteristic lengthscale 
of the variations in U: typically, the latter scale may be thought of as the channel 
width or boundary-layer thickness. Accordingly, we (meanwhile) consider that 
a2 4 1, while Z2 remains O(1). 

In this case, i t  is readily seen that 

(5.1 a )  

B(z), U(z), 9 ( z )  = O(a2). (5.1 b, c ,  d )  

Therefore, to leading order, is independent of the perturbed wave field 4, since (4.6) 
shows 4 to be O(U$/,@) in magnitude. (The case where a natural mode with 
wavenumber (a2+ 12)i has phase speed close to that with wavenumber a - i.e. near 
zero in the present frame - is the only possible exception: a possibility too remote 
to warrant examination here.) 

Equation (2.9) then reduces to 

@+Z2[-l +cr;2a’(Pf,3-a’d)]& = O(a2&): 

where d denotes the above 0(1) approximation to d ( z ) .  However, from (3.1), i t  
follows that e,3-?L’d is also O(a2). We therefore have &“-Z2& = O(a2&) when cr: 
is O( l ) ,  and this admits only the trivial solution & = 0 with boundary conditions & = 0 
a t  z = x1 and z2. In  order to find non-trivial solutions, one must consider cases where 
crl is O(a)  ; but then the wave-field perturbation q! cannot normally be neglected. 

Fortunately, simplification remains possible for cases with 

12 + 1, a = 0(1), 

which we now consider. When this is so, 

a2$ * 
q z )  = -:+O(Z-2), 

U 
W ( z ) ,  9 ( z )  = 0(ZE2). 

( 5 . 2 ~ )  

(5.2 b, c ,  d )  

Also, since significant variations in &, U and 4 now occur over lengthscales O(l-l) ,  

4 = o(cr;l&), 6’ = O(lcr,’&), U’ = O(Zu;1&). 

Accordingly, (2.9) reduces to 

1-2fjj” + [g;2a‘(po 1 , 3  - u ’ d ) - l ] &  - = -a;l~’Re(Uq!}+O(l-’cr;2&), ( 5 . 3 ~ )  

or 

on substitution for Pf,3, d and U 
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Further, (4.7) simplifies to 

4 = (Z-""+ U)_+O(1-2) d(2z)2- U 

d2$ 
(5.4a) 

(5.4b) 

on using the result (4.6) and recalling that U, @ vary on lengthscales O(1). 

re-expressed in the form 
Since c1 is real, by assumption, the coupled equations (5 .3b )  and (5.4b) may be 

( 5 . 5 ~ )  1 + B L ~ G ( Z )  ~2 = T-, 1 &- 
(5.5b) 

(5.6c, d )  

Locally, G(z)  and H ( z )  may be treated as constants for purposes of integration with 
respect to 5. 

These may be rewritten as a pair of uncoupled equations 

l - h k ( z )  vk  = 0 (k = 1, 2),  (5.7) 

( 5 . 8 ~ )  A1,, = K - vr2(G+ H )  & [v;*(G+ H ) ,  - ~O.;~H]~}, 

V, s r + (Ak + a r 2 H )  8. (5.8b) 

Since & and r must vanish on rigid boundaries at z = z1 and z2, v k  must also vanish 
there. Two linearly independent approximate solutions of (5 .7) ,  constructed by the 
WKB method, are 

[$- 1 
where 

for some integer N .  
Clearly, when 1 + h k  is real and non-negative throughout the interval [zl, z,], there 

is no non-trivial solution v k .  Conversely, solutions are sure to exist, for suitable 
values of N and B,, when 1 + A ,  is real and negative throughout [z,, z z ] .  Equation (5.9) 
is then the (approximate) eigenvalue relation for the growth (or decay) rates g1 of 
a sequence of modes for the various values of N .  A rather similar, though simpler, 
eigenvalue problem was thoroughly considered by Leibovich (1977 b) .  I n  this, A, had 
the form q 2 F ( z ) ,  where F(z )  was a monotonically increasing (or decreasing) function 
on a semi-infinite domain. Instability then arose whenever F(z)  was negative in a finite 
subinterval of the flow domain. 

For flows with critical layers, the functions G(z )  and H ( z )  are normally singular 
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FIGURE 1 .  Example of wavy flows examined in $6. 

where fi = 0. Treatment of such singularities requires care: in particular, it  is not 
obvious that one is entitled to indent under these, in the complex z-plane, in 
evaluating the integral of (5 .9) .  Fortunately, the instability under discussion does not 
rely on a critical-layer mechanism for its operation, and we therefore pass over such 
complexities. For simplicity, we now confine attention to a class of wavelike flows, 
without critical layers, which exhibit this instability. 

6. A simple example: a = z ,  a# = uePaz 

We here consider a uniform shear flow fi = z in some interval z1 < z < zz that  does 
not include the origin. Superposed on this flow is a two-dimensional wavelike 
disturbance with a# = aexp (-012). This satisfies Rayleigh’s equation (3 .5)  and we 
may suppose that the chosen form of # may be realized by the imposition of suitable 
inhomogeneous boundary conditions at z1 and z2. The composite flow is a nearly uni- 
form shear with wavelike perturbation, an example of which is sketched in figure 1. 

Now, G(z )  = -aZ(z-le--2az)’, H ( z )  = azz - ze - zaz  

and hence Al,z = q { -  1+_[1-22q-1(1+az)-l]~},  (6 .1)  

where 
(1 +az) 

q ( z )  E ( E y e - z a z  22 

We restrict attention to a search for real eigenvalues vl, which would denote 
instability. 

The functions Al ,z  are real whenever 

Both satisfy 1 +A,  < 0 when either 0 < az < 1 and 

or -1 <az<O.Also ,  l + A l > O a n d l + A ~ < O w h e n a z > O a n d  

the right-hand limit being ( 2 / 0 ~ z ) e - ~ ~ ~  whenever 0 < az < 1. Both values A, satisfy 
1 + A ,  > 0 when the conditions (6 .3)  are satisfied together wibh az > 1 ; also when the 
conditions (6 .2)  and az < - 1 are met. 

When both 1 + A l  and 1 + A, remain positive throughout the flow domain [z,, zz ] ,  no 
solution of (5 .9)  exists. 
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When 1 +A,  > 0 but 1 + A 2  < 0 throughout the flow, there must exist a discrete 
set of real eigenvalues c, that satisfy (5.9) with k = 2. Since l is assumed large, we 
may normally expect these eigenvalues to be associated with rather large (positive 
or negative) integers N .  When 0 < a z  < 1 throughout [z,, z,], these eigenvalues lie 
in the range (6.4) : the infimum then refers to the smallest value attained in the flow 
domain. In contrast, (5.9) has no solutions when k = 1 : the trivial solution V, = 0 
is then the only one available. Since there are non-trivial solutions for V,, the 
corresponding solutions for .li, and r are both non-trivial. 

When both 1 +Al and 1 + A 2  are negative throughout [z,, z,], there are three 
possibilities: (i) there are eigenvalues el of (5.9) with k = 1 ,  for some values N = N , ,  
that are not eigenvaluespf (5.9) with k = 2 for any integer N ;  (ii) there are eigenvalues 
el of (5.9) with k = 2, for values N = N,,  that are not eigenvalues of (5.9) with k = 1 
for any integer N ;  (iii) there are eigenvalues el that  satisfy (5.9), with both k = 1 
and 2, for some pairs of integers N l , N , .  In  cases (i) and (ii) V, and V, respectively 
are identically zero while the other has non-trivial solutions; in case (iii) both V, and 
V, have non-trivial solutions. 

In all the above cases for which real eigenvalues el occur, there exist exponentially 
growing disturbances, since real roots appear in pairs, with opposite signs. The flow 
is then unstable to disturbances of the assumed form, in the absence of viscosity. In  
particular, such instability occurs whenever az > 0 or - 1 < a z  < 0 throughout the 
flow, but not when az < - 1 throughout the flow. The former instability criterion, 
that az > 0 throughout the flow, is satisfied whenever the local wave amplitude 161 
everywhere decreases in the direction of increasing speed of the primary flow ti relative 
to the wave. When the wave amplitude 141 everywhere increases in the direction of 
increasing speed (as for a > 0, z < 0), the instability persists when the wave is 
sufficiently long that lazl < 1 throughout [z,, z,]; but no such instability is evident for 
waves short enough that lazl > 1 everywhere in [z,, z 2 ] .  

Cases where 1 + h k  change sign within the flow domain or where hk become complex 
have not been considered. Detailed examination of the eigenvalue relations (5.9) 
would then be necessary, to determine whether growing modes are permitted (cf. 
Leibovich 1977b). We here rest content with having established the existence of 
instability for the above, simpler examples. 

7. Physical discussion 
The underlying physical mechanism for instability is not immediately apparent 

from the foregoing analysis: indeed, the mechanism is a rather subtle one. 
I n  the case of weak shear flows O(c2) ,  Craik (1977) and Leibovich (1977b) have given 

a clear account of the physical processes. Craik’s interpretation of the instability is 
a kinematical one (with the ‘dynamics ’ contained in Helmholtz’s vorticity laws). An 
initially unidirectional mean shear flow is envisaged as having weak spanwisc-periodic 
variations in magnitude. Associated with these variations is a spanwise-periodic 
vertical vorticity, which is necessarily tilted by the vertical gradient of the Stokes 
drift, since vortex lines and particle paths must coincide in inviscid flows. The 
resultant x-vorticity induces spanwise-periodic vertical motions, which further 
distort the mean shear flow. This intensifies the initially postulated variations, 
provided that the Stokes drift gradient and mean shear have the same sign. This 
‘feedback cycle ’ leads to exponential growth ogthe spanwise-periodic disturbances. 
Leibovich’s (1977b) interpretation in terms of a ‘vortex force’ @ x w is essentially 
equivalent to the above. 
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The presence of waves is crucial for the mechanism to work: for it is the difference 
between the Lagrangian-mean and Eulerian-mean flows that generates the longitu- 
dinal vorticity. Tilting of vertical vorticity by the Eulerian-mean shear &(z)  is exactly 
offset by the tilting of mean spanwise vorticity by the spanwise-periodic component 
of the x-velocity. 

For such weak mean flows, we now give an alternative and complementary physical 
interpretation, from a purely Eulerian viewpoint that  does not explicitly involve the 
Lagrangian concept of Stokes drift. (The author is grateful to Professor G. K. Bat- 
chelor and Dr M. E.  McIntyre for indicating that such an Eulerian interpretation 
must exist.) The underlying mechanism is a variant of the familiar Taylor-Gortler 
instability of curved flows, in which the curvature derives from the undulatory 
streamlines. In  the inviscid approximation, the governing equation of Taylor-Gortler 
instability has the form (cf. Lin 1955, p. 97) 

li),zz+12[a-l]~ 2 K u d  = 0, 

where K denotes the curvature of streamlines. This bears an obvious resemblance to 
the result (2 .4 )  for weak mean shear flows and also to the result (5.3) for strong shear 
flows (though a further term then appears on the right-hand side). I n  the former case, 
2 K a  is replaced by the Stokes drift gradient ti:f and in the latter by P;'-u'd.  

Now, the curvature of a particular undulatory streamline is - a2t3 to leading order, 
and the local tangential velocity along this streamline is just u = a+$,, correct to  
o ( E ) ,  where 5, and GI are given by C ( 3 . 2 ) .  Proceeding heuristically, we construct the 
x-average a t  a fixed level z :  

But, for weak mean shear flows, ti is just - c  to leading order, and the Stokes drift 
C(3.3) reduces to 

where $" = $4. Accordingly, 

$ = +ezc-1(1$12)" + 0 ( 6 3 ) ,  

us'- 1 - €2aZc-1(1qy)', 2 K  = &2012c-'(1$q2)', 

which differ only by the factor of +. 

requires some care. The streamline passing through a point (xo, zo) is 
In  fact, it is necessary to evaluate the curvature K correctly to O(e2) ,  and this 

where all the omitted O(e2) terms are second harmonics in exp (2 iax )  or exp (2iax0) 
that  play no essential part in the subsequent analysis. This may be rewritten as 

1 - E Re { (w)' e iax}]+  second harmonics, 
z=zo 

and the curvature K a t  (xo, zo) of this streamline is 

z-zo 
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With weak mean shear flows, U = - c  and the O(e2)  mean correction to K(x,, zo)  is 

above. That is to say, 2 z  = ti:' as required; and the instability mechanism with 
weak shear is precisely a Taylor-Gortler instability, but averaged in the x-direction, 
with the curvature of the flow deriving from the undulatory streamlines. 

Of course, this pleasing physical interpretation in no way contradicts the kine- 
matical interpretation in terms of vortex-line deformation : the two are comple- 
mentary, as is also the case for the familiar Taylor-Gortler instability. Nor should 
the Eulerian analysis sketched above be viewed as anything more than a heuristic 
demonstration : a rigorous Eulerian analysis certainly exceeds the GLM derivation 
in its complexity. 

For strong O(1) shear flows, the instability mechanism is no longer precisely 
equivalent to the (averaged) Taylor-Gortler instability, but obvious similarities 
remain. The inviscid eigenvalue problem defined by (5.7), (5.8) and boundary 
conditions resembles that for Couette flow (cf. Drazin & Reid 1981, p. 83), but with 
more-complicated A,. Also, the result of $6, that instability occurs when the wave 
amplitude everywhere increases in the direction of decreasing speed (relative to the 
stationary wave profile), is in line with the results of the Craik-Leibovich theory for 
weak shear flows. That this instability persists, in the example of 56, when 
- 1 < az < 0 would seem to suggest that  the additional terms of the strong shear-flow 
problem tend to enhance, rather than inhibit, the instability. 

8. Conclusion 
An instability mechanism has been revealed that may lead to the exponential 

growth of longitudinal-vortex modes in strong shear flows subjected to two- 
dimensional wavelike disturbances. The wave field is initially independent of the 
spanwise coordinate, and the mechanism is unrelated to that first proposed by Benney 
& Lin (1960) or to any other theoretical model that relies crucially on forcing by 
pre-existing oblique-wave modes. 

In  effect, the analysis is a generalization to strong shear flows of that  developed 
by Craik (1977) and Leibovich (1977b) for the growth of Langmuir circulations. This 
largely employs the generalized Lagrangian-mean formulation of Andrews & McIntyre 
(1978a, b ) ,  which, though yielding the governing equations less readily than in cases 
of weak mean shear, remains preferable to a purely Eulerian analysis. 

With weak O(e2) or O(e) mean flows, the GLM equations (2.1) are effectively 
complete, since the back-effect of mean-flow evolution on the wave field is negligible. 
They then reduce directly to their Eulerian counterparts, since Stokes drift and 
pseudomomentum are equal at O(e2) .  Considerable saving of effort and benefit of 
physical insight then accrue: this was shown in the case of Craik-Leibovich 
instability, and i t  is doubtless so in other cases also. With strong mean shear flows, 
the GLM equations may still reduce to their Eulerian-mean counterparts with some 
savings, but these equations are no longer complete and a separate calculation of the 
modifications to the wave field and associated pseudomomentum becomes necessary. 

The physical interpretation of the instability for weak shear was further elucidated. 
The mechanism is an inviscid one, which may be viewed in terms of distortion of mean 
vortex lines by the Stokes drift of the wave field, or in terms of an equivalent 'vortex 
force', as already described by Craik (1977) and Leibovich (1977b). Alternatively, it 
may be seen as a Taylor-G6rtler instability of curved flows, viewed in a reference 
frame in which the waves are brought to rest and averaged in the downstream 
direction, the local curvature being that of the undulating streamlines. 

-1 4e 2 a 2 c -2  ( 1 # 1 2 ) ' ,  which yields an additional term to 2 E  that is equal to that found 
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For strong shear flows, the physical mechanism cannot be completely understood 
in such simple terms, but similarities with the weak-shear instability remain. The 
linear eigenvalue problem that governs the stability of the longitudinal vortices is 
then fairly complex, and will normally require numerical solution for particular flows. 
But, in the inviscid limit with small spanwise spacing of the vortices, the problem 
simplifies sufficiently for definite results to be obtained analytically. The existence 
of the instability mechanism with strong shear was demonstrated by an example, and 
it may be expected to operate in a wide class of similar flows. Extension of the analysis 
to viscous flows and all spanwise wavenumbers is reasonably straightforward in 
principle, but would entail considerable computational effort. 

I am grateful to Dr M. E. McIntyre and Professor S. Leibovich for stimulating, by 
their own writings and comments, my interest in the present work. 
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